Transcription inhibition by platinum-DNA cross-links in live mammalian cells.
نویسندگان
چکیده
We have investigated the processing of site-specific Pt-DNA cross-links in live mammalian cells to enhance our understanding of the mechanism of action of platinum-based anticancer drugs. The activity of platinum drugs against cancer is mediated by a combination of processes including cell entry, drug activation, DNA-binding, and transcription inhibition. These drugs bind nuclear DNA to form Pt-DNA cross-links, which arrest key cellular functions, including transcription, and trigger a variety of responses, such as repair. Mechanistic investigations into the processing of specific Pt-DNA cross-links are critical for understanding the effects of platinum-DNA damage, but conventional in vitro techniques do not adequately account for the complex and intricate environment within a live cell. With this limitation in mind, we developed a strategy to study platinum cross-links on plasmid DNAs transfected into live mammalian cells based on luciferase reporter vectors containing defined platinum-DNA lesions that are either globally or site-specifically incorporated. Using cells with either competent or deficient nucleotide excision repair systems, we demonstrate that Pt-DNA cross-links impede transcription by blocking passage of the RNA polymerase complex and that nucleotide excision repair can remove the block and restore transcription. Results are presented for approximately 3800-base pair plasmids that are either globally platinated or carry a single 1,2-d(GpG) or 1,3-d(GpTpG) intrastrand cross-link formed by either cis-{Pt(NH(3))(2)}(2+) or cis-{Pt(R,R-dach)}(2+), where {Pt(NH(3))(2)}(2+) is the platinum unit conveyed by cisplatin and carboplatin and R,R-dach is the oxaliplatin ligand, R,R-1,2-diaminocyclohexane.
منابع مشابه
Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells.
To overcome drug resistance and reduce the side effects of cisplatin, a widely used antineoplastic agent, major efforts have been made to develop next generation platinum-based anticancer drugs. Because cisplatin-DNA adducts block RNA polymerase II unless removed by transcription-coupled excision repair, compounds that react similarly but elude repair are desirable. The monofunctional platinum ...
متن کاملVisualizing inhibition of nucleosome mobility and transcription by cisplatin-DNA interstrand crosslinks in live mammalian cells.
Cisplatin is a widely used anticancer drug that acts by binding DNA and causing the formation of intrastrand and interstrand (ICL) crosslinks, but the precise downstream effects of the latter damage are not well understood. In this study, we investigated the influence of cisplatin ICLs on synthetic nucleosomes that were platinated in a site-specific manner in vitro and on gene transcription in ...
متن کاملEffect of diethyldithiocarbamate on cis-diamminedichloroplatinum(II)-induced cytotoxicity, DNA cross-linking, and gamma-glutamyl transpeptidase inhibition.
Diethyldithiocarbamate (DDTC) has been shown to protect against the toxicity of cis-diamminedichloroplatinum(II) (DDP) without inhibition of antitumor effect. We report here that DDTC is unreactive toward DDP complexes in which both chlorides have been replaced by guanine residues but removes platinum from a variety of other ligands, and that this difference in reactivity may provide the basis ...
متن کاملX-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct.
DNA is a major target of anticancer drugs. The resulting adducts interfere with key cellular processes, such as transcription, to trigger downstream events responsible for drug activity. cis-Diammine(pyridine)chloroplatinum(II), cDPCP or pyriplatin, is a monofunctional platinum(II) analogue of the widely used anticancer drug cisplatin having significant anticancer properties with a different sp...
متن کاملInduction of DNA-protein cross-links by platinum compounds.
The differences between cis- and trans-diamminedichloroplatinum II (DDP) in forming DNA-protein cross-links in isolated human lymphocytes were investigated. Both cis- and trans-DDP can induce DNA-protein cross-links. We show that cis-DDP forms complexes between DNA and proteins faster than trans-DDP. This results from an increase in the quantity of DNA and platinum together with an increase in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 21 شماره
صفحات -
تاریخ انتشار 2010